55 research outputs found

    Internet of Tangible Things: Workshop on Tangible Interaction with the Internet of Things

    Get PDF
    The rise of the Internet of Things (IoT) brings abundant new opportunities to create more effective and pleasing tangible user interfaces that capitalize on intuitive interaction in the physical world, whilst utilizing capabilities of sensed data and Internet connectivity. However, with these new opportunities come new challenges; little is still known how to best design tangible IoT interfaces that simultaneously provide engaging user experiences and foster a sense of understanding about the often-complex functionality of IoT systems. How should we map previous taxonomies and design principles for tangible interaction into the new landscape of IoT systems? This workshop will bring together a community of researchers from the fields of IoT and tangible interaction, in order to explore and discuss how parallels between tangible interaction and the properties of IoT systems can best be capitalised on as HCI research moves increasingly toward the Internet of Tangible Things (IoTT). Through ideation and discussion, the workshop will function as a springboard for the community to begin creating new taxonomies and design considerations for the emerging IoTT

    Comparison of the haptic and visual deviations in a parallelity task

    Get PDF
    Deviations in both haptic and visual spatial experiments are thought to be caused by a biasing influence of an egocentric reference frame. The strength of this influence is strongly participant-dependent. By using a parallelity test, it is studied whether this strength is modality-independent. In both haptic and visual conditions, large, systematic and participant-dependent deviations were found. However, although the correlation between the haptic and visual deviations was significant, the explained variance due to a common factor was only 20%. Therefore, the degree to which a participant is “egocentric” depends on modality and possibly even more generally, on experimental condition

    The haptic perception of spatial orientations

    Get PDF
    This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level

    Effect of frequency difference on sensitivity of beats perception

    Get PDF
    Two vibrations with slightly different frequencies induce the beats phenomenon. In tactile perception, when two pins of different frequencies stimulate the fingertips, an individual perceives a beats caused by a summation stimulus of the two vibrations. The present study demonstrates experimentally that humans can perceive another vibration based on the beats phenomenon when two tactile stimuli with slightly different frequencies are stimulated on the finger pad with a small contactor in different locations at the same time. Moreover, we examined the amplitude of the detection threshold to be able to perceive beats phenomenon on the index finger with 5 carrier frequency (63.1, 100, 158.5, 251.2, and 398.1 Hz) and 4 beats frequency (2.5, 3.98, 6.31, and 10 Hz) when two stimuli 1 mm distance apart are vibrated at a slightly different frequency. From the experiments, it is concluded that the amplitude threshold to be able to perceive beats decreases as the standard frequency increases under 398 Hz. Furthermore, from comparing the absolute detection threshold and beats detection threshold, as the carrier frequency increases, the required amplitude at two pins for the detection of beats decreases compared to absolute vibration

    Change of Gene Structure and Function by Non-Homologous End-Joining, Homologous Recombination, and Transposition of DNA

    Get PDF
    An important objective in genome research is to relate genome structure to gene function. Sequence comparisons among orthologous and paralogous genes and their allelic variants can reveal sequences of functional significance. Here, we describe a 379-kb region on chromosome 1 of maize that enables us to reconstruct chromosome breakage, transposition, non-homologous end-joining, and homologous recombination events. Such a high-density composition of various mechanisms in a small chromosomal interval exemplifies the evolution of gene regulation and allelic diversity in general. It also illustrates the evolutionary pace of changes in plants, where many of the above mechanisms are of somatic origin. In contrast to animals, somatic alterations can easily be transmitted through meiosis because the germline in plants is contiguous to somatic tissue, permitting the recovery of such chromosomal rearrangements. The analyzed region contains the P1-wr allele, a variant of the genetically well-defined p1 gene, which encodes a Myb-like transcriptional activator in maize. The P1-wr allele consists of eleven nearly perfect P1-wr 12-kb repeats that are arranged in a tandem head-to-tail array. Although a technical challenge to sequence such a structure by shotgun sequencing, we overcame this problem by subcloning each repeat and ordering them based on nucleotide variations. These polymorphisms were also critical for recombination and expression analysis in presence and absence of the trans-acting epigenetic factor Ufo1. Interestingly, chimeras of the p1 and p2 genes, p2/p1 and p1/p2, are framing the P1-wr cluster. Reconstruction of sequence amplification steps at the p locus showed the evolution from a single Myb-homolog to the multi-gene P1-wr cluster. It also demonstrates how non-homologous end-joining can create novel gene fusions. Comparisons to orthologous regions in sorghum and rice also indicate a greater instability of the maize genome, probably due to diploidization following allotetraploidization

    Audiotactile interactions in temporal perception

    Full text link
    corecore